
1

Engineering of
Multiagent Systems

Engineering of
Multiagent Systems

Scott A. DeLoach, Ph.D.
Dept of Electrical and Computer Engineering

Air Force Institute of Technology

March 2001

http://en.afit.af.mil/sdeloach/ sdeloach@computer.org

Engineering of
Multiagent Systems

Engineering of
Multiagent Systems

Scott A. DeLoach, Ph.D.
Dept of Computing & Information Sciences

Kansas State University

July 2001

http://www.cis.ksu.edu/ sdeloach@computer.org

2

3

Overview

� Motivation
� What are multiagent systems and why do we need

them

� Multiagent Systems Engineering (MaSE)
� Specification to code methodology for building

multiagent systems

� agentTool
� Automation for MaSE
� Supports design, verification, and code generation

� Wrap Up

4

Agent

� An agent is anything that can be viewed as
� perceiving its environment
� acting upon that environment

� An intelligent agent is an agent that
� is autonomous agent
� exhibits goal-directed behavior
� interacts with other agents

3

5

Multiagent System

� A system consisting the following elements

� An environment

� A set of objects in the environment

�Objects are passive and can be perceived, created,

destroyed & modified by agents

� A set of agents

� A set of relations, which link agents/objects

�Relations between agents are called acquaintances

6

Multiagent Systems

Legacy
System

Application
Agents

Broker

Information
Source

4

7

Why Multiagent Systems?

� Problems are physically distributed
� Networks force us to take a distributed view
� Problem complexity forces us to take a local

viewpoint
� We need systems that are

� adaptive to changes in the structure or environment
� redundant & reconfigurable
� allow integration of legacy systems
� provide automated data conversion
� give different types of users different views of

system capability and information

8

Key Aspects of Multiagent
Systems

� Action
� How do several agents act simultaneously
� What are the consequences of their actions

� Interaction
� How do we describe mechanisms allowing agents to

interact
� How do we induce specific behavior in other agents

�How to handle cooperation versus competition

� Organization
� Which agents can interact
� What types of interactions are allowed

5

9

Building Multiagent Systems

� Design must be
� Adaptive
� Extensible
� Dynamic
� Verifiable

� Requires a principled
approach
� Methodology
� Language
� Tools

� Methodology and
modeling language must
focus on
� Organization
� Action
� Interaction

10

Multiagent Systems Engineering

6

11

Methodology Goals

� Full “engineering” approach to multiagent
systems development
� Analysis, design, and implementation
� Series of graphically based models
� Logical approach to transforming one model into

next

� Support heterogeneous multiagent systems
� Languages
� Architectures
� Environment

� Tool supportable

12

MaSE

� Goal based
� Role based analysis

� Roles and tasks capture
required organization,
actions, and interactions

� Roles are played by
agent classes
� Captures organization

� Agent design captures
roles and tasks
� Conversations capture

interaction
� Actions are captured via

methods

Creating
Agent
Classes

Requirements

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining
Roles

Assembling
Agent
Classes

System
Design

Applying
Use Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

7

13

Capturing Goals
Goal Hierarchy Diagram

1. Inform admin of
host violations

1.1.1 Detect invalid
file deletion

attemps.

1.1.2 Detect invalid
file modification

attempts.

1.1.3 Notify
administrator of

violations.

1.2.1 Detect invalid
login attempt.

1.1 Inform admin of
file violations

1.2 Inform admin of
login violations.

Capture the “high-level” goals of the system

14

Applying Use Cases
Sequence Diagrams

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

Capture the basic sequence of
events between various roles

8

15

Refining Roles
Role Model

FileNotifier
1.1

LoginNotifier
1.2

FileDeletionDetector
1.1.1

FileModifiedDetector
1.1.2

LoginDetector
1.2.1

AdminNotifier
1.1.3, 1.1.3a
1.2.2, 1.2.2a

User

Describes all the “roles” that must be played for the
system to work as described. Includes notation of
interaction relationships

16

Refining Roles
Extended Role Model

FileNotifier
1.1

LoginNotifier
1.2

FileDeletionDetector
1.1.1

FileModifiedDetector
1.1.2

LoginDetector
1.2.1

AdminNotifier
1.1.3, 1.1.3a
1.2.2, 1.2.2a

Detect File
Deletions

Determine
Validity Notify Detect File

Deletions
Determine

Validity

Detect Failed
LoginsDetect Logins

Determine
Validity

Notify Notify User

Invalid File
Deletion

Invalid File
Modification

Failed
Login

Invalid
Login

Login
Notification

File
Notification

User

Display

Adds the concept of Concurrent Tasks to capture the
behavior required to meet assigned goals and protocols
to capture the interactions between agents

9

17

Refining Roles
Concurrent Task Diagram

FindAdmin
a = getAdminLoc();
t = setTimer(2.0);

wait

receive(RequestNotification(error), agent)

^ send(Notify(error, agent), a)

receieve(Acknowledge, a) ^ send(NotificationComplete(), agent)

[timeout(t)]

Captures
• Messaging Protocols (Interactions)
• Processing (Actions)
• Control (how interactions and actions are related)

18

Design

� We have to ensure that the organization,
action, and interaction specified in the analysis
is designed into our system

� Transform analysis artifacts into design
artifacts
� Roles → agent classes
� Concurrent tasks → conversations and actions

10

19

Creating Agent Classes
Agent Diagram

Notifier
� FileNotifier
� LoginNotifier
� AdminNotifier

FileMonitor
� FileDeletionDetector
� FileModifiedDetector

LoginMonitor
� LoginDetector

UserInterface
� User

FileDetection

LoginDetection

NotifyUser

Captures the assignment of roles to agent classes and
which classes communicate via conversations. Shows
the overall organization of the system

20

Constructing Conversations
Transforming Concurrent Task Diagrams

FindAdmin
a = getAdminLoc();
t = setTimer(2.0);

wait

receive(RequestNotification(error), agent)

^ send(Notify(error, agent), a)

receieve(Acknowledge, a) ^ send(NotificationComplete(), agent)

[timeout(t)]

Separate protocols into binary conversations between
individual agents

11

21

Constructing Conversations
Conversation Diagram (Initiator)

wait
^ Notify(error, agent) Acknowledge()

[timeout(t)]

Captures the protocols at a binary level with some
intermediate processing

22

Constructing Conversations
Conversation Diagram (Responder)

store
display(error, agent)

Notify(error, agent) ^ Acknowledge()

Each path through one side of the
conversation must “match” the other side

12

23

Assembling Agent Classes

LoginDetector

loginDetected (user, location)
loginFailed(username, location)

Validator
userRights : UserList
locations : LocationList

validateLogin(user, location) : Boolean
validateFile(user, file) : Boolean

FileDetector

fileModDetected (file, user)

Defines the internal architecture, methods, and control
of individual agents … how an agent carries out actions

24

System Design
Deployment Diagram

LM1:
LoginMonitor

FM1:
FileMonitor

LM2:
LoginMonitor

FM2:
FileMonitor

LM3:
LoginMonitor

FM3:
FileMonitor

LM4:
LoginMonitor

FM4:
FileMonitor

Notify: Notifier User:
UserInterface

Description of how the system will
look as it is executing in its actual
environment

13

25

agentTool

26

Toolset Goals

� Enforce methodology
� Allow users as much freedom as possible

� Automate design transformations
� Designer performs analysis & makes design decisions
� Tools carry out details and perform bookkeeping

� Automate verification
� Verify at the design level before generating code

� Reuse of analysis, design, & code
� Hide formality
� Generate “correct by construction” code

14

27

Goal Hierarchy

28

Role Model

15

29

Concurrent Task Diagram

30

Agent Diagram

16

31

Conversation Diagram

32

Conversation Diagram

17

33

Support Transformations

� User decides “what” to do
� What roles should be played by what agent
� What communication in a task should become a

conversation

� agentTool performs automatable tasks
� Transform tasks communications and activities into

conversations and agent methods

� Analysis to design transformations are
currently in development

34

Automate Verification

IntelligenceProcessing

DataCollection

JFACC

MissionControlElement

SendCommand

ReturnData

SendATO

SendInfo

SendRawIntell

agentTool
Conversion

Spin

Conversations

Promela Code

Feedback
• text window
• graphical

18

35

Verification Example

wait
^ Notify(error, agent) Acknowledge()

[timeout(t)]

store
display(error, agent)

Notify(error, agent) ^ Acknowledge()

Initiator

Responder

36

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = CollectData
Participant Name = Responder
Current State = wait
State Transition = acknowledge

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = CollectData
Participant Name = Initiator
Current State = logFailure
State Transition = acknowledge

Feedback

proc 0 = :init:
proc 1 = SendInfoInitiator
proc 2 = SendInfoResponder
proc 3 = CollectDataInitiator
proc 4 = CollectDataResponder
q\p 0 1 2 3 4

1 . . . CollectData!collectData
1 CollectData?collectData
1 CollectData!collectionFailure
1 . . . CollectData?collectionFailure
2 . SendInfo!send
2 . . SendInfo?send
2 . . SendInfo!acknowledge
2 . SendInfo?acknowledge

spin: trail ends after 16 steps

final state:

#processes: 5
16: proc 4 (CollectDataResponder) line 92 "verify" (state 27)

proc 3 (CollectDataInitiator) line 65 "verify" (state 24)
proc 2 (SendInfoResponder) line 46 "verify" (state 24) <valid endstate>
proc 1 (SendInfoInitiator) line 25 "verify" (state 22) <valid endstate>
proc 0 (:init:) line 114 "verify" (state 6) <valid endstate>
5 processes created

19

37

Code Generation

� Automatic from agent and conversation
diagrams

� Select platform-dependent components such
as a messaging framework

38

Results

� MaSE and agentTool have been used to develop several
small to medium sized multiagent systems
� Information systems
� Mixed-initiative distributed planners
� Biologically-based immune & intrusion detection systems
� Autonomous control of Uninhabited Air Vehicles

� Users report that MaSE is relatively simple, yet flexible
enough to allow a variety of solutions

� Currently developing larger scale multiagent systems
that are both mobile and dynamic in nature

� agentTool has an active user list of over 100 world-wide
academic, government, and industry users

20

39

Current Research

� Transformations from analysis models to
design models
� Concurrent task ⇒ conversations & internal agent

design

� Extension to add dynamic capabilities
� Agent creation, Death, Mobility, Cloning

� When is the multiagent paradigm appropriate?

� Adding robustness to analysis via obstacles

� Adding ontology development to design

40

Wrap Up

� Defined multiagent systems and why we need
them

� Multiagent Systems Engineering (MaSE)
� Specification to code methodology for building

multiagent systems

� agentTool
� Automation for MaSE
� Supports design, verification, and code generation

� For more info see http://en.afit.af.mil/ai/

